پیش بینی دماهای حداکثر روزانه با استفاده از مدل شبکه عصبی مصنوعی در استان کرمان

thesis
abstract

دما یکی از مهم ترین پارامترها ی اقلیمی است که نقش مهمی در حیات بشر دارد. با توجه به تغییرات اقلیمی و خشکسالی های اخیر پیش بینی دماهای حداکثر از اهمیت زیادی برخوردار است. همچنین در حوزه های مختلف مدیریت منابع آبی و طبیعی، خشکسالی ها، ذوب برف و سیلاب، تبخیر و تعرق، گسترش آفات و بیماری ها اهمیت ویژه ای دارد. با توجه به توانایی شبکه های عصبی مصنوعی در شبیه سازی فرایندهای بسیار پیچیده، از آن ها برای پیش بینی و محاسبه پارامترهای اقلیمی استفاده می شود. هدف این پژوهش پیش بینی دمای حداکثر روزانه سه ایستگاه کرمان، بم و بافت می باشد. بدین منظور پارامترهای اقلیمی روزانه میانگین رطوبت نسبی، میانگین فشار ایستگاه، بیشترین فشار، کمترین فشار، دمای حداقل، دمای حداقل خاک، میانگین دما، تبخیر، میانگین دمای تر، بیشترین رطوبت، کمترین رطوبت، رطوبت ساعت 3 به عنوان ورودی شبکه های عصبی و دمای حداکثر روزانه به عنوان خروجی شبکه مورد استفاده قرار گرفت. پارامترهای مذکور دوره آماری24ساله (2013-1989) را در بر می گیرد. 70 درصد داده ها برای آموزش شبکه و30 درصد برای تست شبکه به کار برده شدند. برای بررسی شاخص های عملکرد شبکه از میانگین مربعات خطا و همبستگی استفاده شد. شبکه پرسپترون چند لایه با توجه به میزان خطا و همبستگی بین داده ها از دقت بیشتری برخوردار است. نتایج خروجی شبکه عصبی پرسپترون چند لایه نشان داد که این شبکه برای ایستگاه های بم و کرمان بهترین خروجی با خطای کم را نشان می دهد. اما برای ایستگاه بافت نتایج هر دو شبکه عصبی تابع بازگشتی و پرسپترون چند لایه نزدیک به هم می باشند، اما نتایج شبکه خطای کم و همبستگی بیشتری نسبت به خروجی مورد نظر (دمای حداکثر روزانه) را نشان می دهد. همچنین از بین پارامترهای اقلیمی استفاده شده دمای حداقل و میانگین دمای تر نسبت به دیگر پارامترهای اقلیمی ورودی شبکه عصبی پیش بینی دمای حداکثر روزانه را با خطای کم و همبستگی بیشتری نشان می دهند.

similar resources

ارزیابی دقت شبکه عصبی مصنوعی بازگشتی نارکس در پیش بینی بارش روزانه در استان کرمان

بارش یکی از پارامترهای مهم اقلیمشناسی و سایر علوم جوّی که از اهمیّ تّ والای یّ در حیات بشر برخوردار است. در سالهای اخیر، سیل و خشکسالی خسار های فراوانی را در بس یّاری از مناطق جهان در پی داشته است. پیش بینی بارش در مدیریت و هشدار این معضلا نق شّ مهمی بر عهده دارد. امروزه شبکههای عصبی مصنوعی از جمله روشهای نوین م یّباش دّ ک هّ برای تخمین و پیشبینی پارامترها با استفاده از ارتباط ذاتی بین دادهه اّ توس عّه یا...

full text

پیش بینی دماهای ماهانه ایستگاه های همدید منتخب استان اصفهان، با استفاده از شبکه عصبی مصنوعی پرسپترون چندلایه

پیش بینی دما از کاربردی ترین برآوردهای عناصر آب و هوایی است. امروزه بخش های کشاورزی و صنعت وابستگی زیادی به شرایط دمایی (آب و هوا) دارند. دما یکی از فراسنج های بسیار مهم آب و هوایی است و از عوامل اصلی هویت آب و هوایی هر ناحیه محسوب می شود. هدف از انجام این پژوهش، مدل سازی برای پیش بینی میانگین دمای ماهانه ایستگاه های منتخب استان اصفهان است؛ از این رو، پس از بررسی طول دوره آماری ایستگاههای موجود...

full text

پیش بینی خشکسالی با استفاده از مدل تلفیقی شبکه عصبی مصنوعی- موجک و مدل سری زمانیARIMA

تبدیل موجک یکی از روش­های نوین و بسیار موثر در زمینه تحلیل سیگنال­ها و سری­های زمانی است. در این روش سیگنال شاخص بارش استاندارد (SPI) با استفاده از موجک مادر منتخب تجزیه شده، داده­های حاصل به­عنوان ورودی مدل شبکه عصبی مصنوعی در نظر گرفته شده و یک مدل تلفیقی برای پیش­بینی خشکسالی ارائه می­گردد. در این تحقیق، از شبکه­های عصبی مصنوعی پرسپترون چند لایه (MLP) و تابع پایه‌ای شعاعی ((RBF، سری زمانی AR...

full text

مدل سازی و پیش بینی رشد اقتصادی در ایران با استفاده از شبکه های عصبی مصنوعی

شبکه های عصبی مصنوعی، یک ابزار قدرتمند برای تجزیه و تحلیل داده ها و مدل سازی روابط غیر خطی به حساب می آید که استفاده از آن طی سال های گذشته در اقتصاد کلان گسترش یافته است. در این مطالعه، کارایی یک مدل شبکه عصبی با یک مدل خطی رگرسیون برای پیش بینی نرخ رشد اقتصادی در ایران مقایسه می شود. برای این منظور ابتدا، یک مدل رگرسیون رشد برای دوره 1315-1373 برآورد شده و سپس با همان مجموعه رگرسورها (متغیرها...

full text

پیش¬بینی جریان روزانه با استفاده از شبکه¬های عصبی مصنوعی و عصبی- موجکی (مطالعه موردی: رودخانه باراندوزچای)

پیش­بینی دقیق جریان در رودخانه­ها یکی از مهمترین ارکان در مدیریت منابع آبهای سطحی به ویژه جهت اتخاذ تدابیر مناسب در مواقع سیلاب و بروز خشکسالی­ها است. به دلیل اهمیت پیش­بینی جریان رودخانه، در این تحقیق جریان روزانه رودخانه­ی باراندوزچای در دو ایستگاه بی­بکران و دیزج طی یک دوره­ی آماری 20 ساله با استفاده از مدل عصبی- موجکی (WNN) که تلفیق آنالیز موجک و شبکه عصبی مصنوعی (ANN) می­باشد، پیش­بینی گرد...

full text

برآورد دمای روزانه خاک با استفاده از شبکه عصبی مصنوعی

دمای خاک یکی از متغیرهای مهم در مطالعات هیدرولوژی، هواشناسی، کشاورزی و اقلیم­شناسی است که اندازه­گیری و برآورد آن ضروری است. با توجه به این­که دمای خاک فقط در ایستگاه­های سینوپتیک کشور اندازه­گیری می­شود، کمبود آن در نقاط فاقد ایستگاه از چالش­های بزرگ در بسیاری از مطالعات مرتبط با کشاورزی است. در این پژوهش، با استفاده از پارامترهای هواشناسی ایستگاه سینوپتیک شیراز در یک دوره 9 ساله (2008-2000) ب...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


document type: thesis

وزارت علوم، تحقیقات و فناوری - دانشگاه یزد - دانشکده جغرافیا

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023